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A process of segregation of two distinct fractions of solid particles in a rotating horizontal drum mixer was
described by stochastic model assuming the segregation to be a diffusion process with varying diffusion
coefficient. The model is based on description of motion of particles inside the mixer by means of a
stochastic differential equation. Results of stochastic modelling were compared to the solution of the
corresponding Kolmogorov equation and to results of earlier carried out experiments.

In our previous paper! we have made an attempt to describe the process of axial segre-
gation of two fractions of solid particles, differing in size, inside a horizontal drum
mixer by means of a one-dimensional diffusion equation

2
a—%x(z,e) + % [V(2,6) x(z,8)] - :—22 [D(z,8) x(z8)] = 0, (1)

where 0 is the time and z the axial coordinate. Function x(z, 8) denotes the concentra-
tion of larger particles at position x at time 0. V(z, 8) is a drift velocity and D(z, 6)
diffusion coefficient. We supposed D to be a known function of axial coordinate and,
as the case may be, also of time. A form of the function D(z, 8) must express the fact
that in the proximity of side walls. of the mixer the segregation of distinct particle
fractions takes place. An explanation of this phenomenon was given in a satisfactory
way by Donald and Roseman?>. If the particles in the mixer are of the same size, shape
and density the segregation does not take place. However, Eq. (1) is still valid and can
be used for description of mixing of solid particles differing, for example, only in a
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colour. An assumption that D is of constant magnitude with respect to position and time
is fully legitimate in such a case®>.

In the above cited paper® it was proved that the drift velocity V(z, 6) may be neglec-
ted. This approach is, from the point of view of diffusion processes theory, more
correct than assumption of non-zero value of V(z, 0) as was used for description of that
type of processes by Fan and Shin®.

We solved the differential equation (1) applying boundary conditions

2 D) x0) = 0; ==L, @
where L' is a half-length of the mixer, and initial condition

x(z, 0) = xo(2) , )

i.e. for prescribed initial distribution x,(2) of greater particles along axial coordinate of
the mixer.

The solution of Eq. (I) was compared to data obtained in experiments carried out
earlier’. In the case of so called “pure segregation”, i.e. for uniform initial distribution
(xo(2) = const.), it was shown that the proposed model successfully fits experimental
data. In the case of other than uniform initial distribution more sophisticated model
comprising both processes of particle mixing and of segregation had to be used. How-
ever, despite of higher model complexity less precise fitting of experimental data was
achieved.

Further on we have proved! that in the case of “pure segregation” the diffusion
coefficient is a function only of axial coordinate, not of time, its value being indirectly
proportional to the value of stationary concentration at given position

D(z) = limB/x(2,0) = B/x.(2). C))

9—se0

Values of function x,(z) were evaluated by interpolation of averaged experimental
values of stationary concentration of larger particles.

THEORETICAL

In the theory of diffusion processes®’ it is demonstrated that following Kolmogorov
forward diffusion equation is equivalent to Eq. ()

2
L\ L veorn-Z0e00 - 0. ©)

So called transitive probability density f is a solution of Eq. (5)

[ = fe8]250) = lim-Plzs 2@ <z+Az|z = 28] ©>8)  (6)
z—0
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The probability density f describes e.g. one-dimensional random motion of a material
particle, the position of which Z(0) is a stochastic function of time defined at each 8 by
the inequality in Eq. (6), under the condition that in certain preceding time 6, the
particle was located at a position z; (see footnote)*.

It was proved®®, that the stochastic process Z(6) may be also described by the
stochastic differential equation

dZ(6) = V[Z(8), 8] d6 + [2D (Z(0), )] dW(8), @

where the functions V and D are identical with that in Eq. (5). The function W(0) is a
source of randomness of the process Z(8). It is usually called Wiener process and is
defined as the stochastic process with Gaussian distribution, zero mean value and
variance equalling length of time interval elapsed from the origin of the process.
Process W(0) itself has zero value at the origin. A solution of Eq. (7) satisfies to transi-
tive probability density f defined by Eq. (6).

Both approaches, i.e. solution of Kolmogorov equation and direct numerical solution
of stochastic differcntial equation, will be used for description of one-dimensional
diffusion of solid particles in a horizontal drum mixer with length L (L = 2L") — see Fig. 1.
We shall assume symmetry of the diffusion (mixing) process with respect to the centre
of the mixcr identical with the origin of axial coordinate z. We shall further consider
uniform initial distribution of particle fraction under consideration inside of the mixer

/L, [-L' szs+L']

fo(2,80) = (8 = 0) ®)
0, [l2l>L]

As it was stated above we shall assume zero value of the drift velocity and the case
of so called “pure segregation” will be considered, i.e. diffusion coefficient will be
function only of particle position on the axial coordinate.

The conditions of elastic reflection of particles on the side walls of the mixer may be
expressed by relation (cf. Eq. (2))

aiz[o(z) fiz0)] = 0, (z=2L). ©)

* By this way we define the particle as a material point, in the case of the particle having defined size it is
necessary to consider Z(6) as the coordinate of the particle centre of gravity.
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Under fulfilment of the above conditions following equation for stationary prob-
ability density f is valid

D(2) limf(z;8) = D(2) f.(2) = b = const. 10
8-
After introducing dimensionless coordinates of time and particle position

y=zIL, t=0bL, (11

we can define dimensionless transitive probability density and dimensionless diffusion
cocfficient H

o) = LfYL; dL/b), H(y) = DOL)/BL = 1/94(y). (12

Then Eq. (5) may be rewritten in dimensionless form
) i
ot 903 9 = 5 5 (903 0/9.001, 13)
with initial condition
1, [-1R2sys+1/2]
P(y;0) = @ = — 4
0, |yl>12

and boundary conditions

;,"’;[cp(v; D/9.0] = 0, (y=21/2). (15)

Using the same assumptions as in the three previous paragraphs we can write
corresponding stochastic differential equation®® , expressed now in an integral form

Fig. 1
Random motion of one of greater
particles inside of rotating drum mixer -t
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2(0) = Z(0)+V2 f: [DEZ())]% dW(x) . (16)
In a way analogous to Eqs (1) and (12) we can define dimensionless variables
Y(¢) = Z@L/b), H[Y(t)] = D[Z(LL/b)/L)/bL . a7

A definition of “dimensionless” Wiener process, with respect to numerical solution of
the stochastic differential equation and possibility comparing results with the solution
of diffusion equation (I13), requires some additional considerations: According to Ito’s
definition of stochastic integral Eq. (16) may be written in the form

n

[Z(8) - Z(0)) V2 = iim > [D(Z®_ ) [W6) - W6, _ )], (18)

iwl
where 0 =67 <6;<..8_; <0 <..0,=0, A= max(6, - 6,_,) and D(Z(0)) is (with probability
equalling one) a continuous function of time. Distribution function of Wiener process is
according to its definition given by relation

P{W@)<w = [ exp(-u?/2)/(2nt)" du. (19)
Let us denote
a=6-6_, 20

and consider o to be constant for all values of i. According to Feller'® we shall intro-
duce an identity operator X,(6) 4 X;(0) for all stochastic processes having identical
distribution function. Considering that Wiener process W(¢) has Gaussian distribution
function and, consequently, independent increments, we can write equation

W(8,) - W(e,_,) 4 W) 4 VaG;, @n

where G; is a random variable with Gaussian distribution N(0,1). Then Eq. (18) may be
replaced by

n
[2(6) - Z©)]/VZ £ limVa Y [D(Z(6;-))]*G; . 22)
a—0 iml
Let us further define dimensionless time increment

y=oablL . 23)

Dividing Eq. (22) by the mixer length L and considering Eq. (I7) we can finally write
“dimensionless” stochastic differential equation

Y(0) £ Y(0)+V2 mﬁ 21 [HY(, )% G, =
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=Y(0) +VZ }[H(Y(s))]”“ au(s) . 24
[1]

The stochastic function of time U(s) defined in Eq. (24) may be called
“dimensionless” Wiener process. Its increments can be approximated by relation

AU =~ VY G. (25)

The initial value of stochastic process Y(¢) bas a distribution defined by Eq. (14).

Now we shall consider the elastic reflection of particles at the ends of the interval
< 0.5, +0.5 >, (i.e. on the side walls of the mixer) in such a sense: If in the progress
of numerical simulation using fixed value of time increment y > 0 at any time f =yn a
value of Y(¢) will overlap boundaries of that interval, then the reflection of particle back
into the interval will be considered. The length of particle trajectory after the reflection
equals the length of overlap, but the particle moves in opposite direction.

The solution of Eq. (24), i.e. the stochastic function of time Y(r) is described by
following distribution function

O(y) = P-1/2=Y(r) <y}, (2(1/2)=1), (26)
the first derivative of which

o) = dP(y)/dy (27)

is solution of Eq. (13). It enables us to compare the results of segregation modelling
applying Kolmogorov equation to results of numerical simulation based on application
of the stochastic differential equation.

EXPERIMENTAL

Experimental data presented in this paper were measured by Rochowiecki’ in a model mixer (length 12 cm,
diameter 7.4 cm) filled with two fractions of a sea sand (particle size 0.385 — 0.43 mm and 0.2 — 0.25 mm).
Concentration of greater particles was measured at 11 sampling ports evenly located along the mixer.
Details are given in paper of Rochowiecki.

Numerical Computations

Numerical computations reporied in following paragraphs were executed on a personal computer AT/286
with 640 kB RAM and 80287 mathematical co-processor. All programmes were coded in Turbo PASCAL
(Borland, ver. 5.5) using extended range arithmetics.

Interpolation of stationary concentration profile. The values of diffusion coefficients D and H can be
easily calculated using Eqs (10) or (12) if value of stationary probability density f.(z) or @.(y) is known
at any point of mixer axial coordinate. Probability density f.(2) is related to particle concentration x(z) by
equation

0,
fool2) = xeal2)/f xe0(u) dus . (28)
0.5
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However, as it was mentioned above, there were only 11 measured values of stationary concentration along
the mixer at our disposal. Therefore, we have used cubic spline interpolation!! for evaluation of stationary
concentrations at arbitrary position between experimental (grid) points. The values of stationary concentra-
tion at the boundaries of mixer (on side walls) were not ascertainable by measurement’’. We have esti-
mated them by trial-and-error method until condition

0 A
Tout)dy = 1 @9)
0.5

was fulfilled, where $,(y) is cubic spline approximation of stationary probability density.

A value of constant b in Eq. (10) was determined by simple regression method described earlier' using
concentration profiles measured at 2, 4, 6 and 10 min from beginning of the process. The value of b was
8.63.10°m s,

Numerical solution of Kolmogorov equation. Kolmogorov equation (13) with initial condition (14) and
boundary conditions (15) was solved using finite difference method (Crank-Nicolson scheme)!2? with
dimensionless axial coordinate step & = 0.005 and dimensionless time step k¥ = 0.0001. The absolute error
of dimensionless probability density ¢ was less than 1 . 1075,

Numerical solution of stochastic differential equation. Random numbers G were generated by method of
inverse distribution function interpolation!?

G=F'() , (30)

where F! is inverse Gaussian distribution function and M is uniform random variable on interval < 0, 1 >.
Standard procedure RANDOM of Turbo PASCAL was used for generation of M values. The algorithm of
Buttler'? was adopted for interpolation of F~! in Eq. (30). The grid values of F~! were evaluated by nume-
rical integration of Gaussian probability density fuaction. 2 049 grid points were used for interpolation.
The stochastic differential equation (24) (SDE) was solved for a set of N + 1 hypothetical modelling
particles distributed at origin (f = 0) evenly along the mixer axis, i.e. on the interval < -0.5, +0.5 >.

Yoj = -05+j/Np, j=0,1,2,...,Np 13))

(cf. initial condition (14)), where Yy ; denotes the position of j-th particle at time ¢ = 0.
Euler's method!? with constant time step k was used for solution of Eq. (24) for each particle. SDE was
rewritten to form

Yas1j = Yaj+AYnj, n=0,1,2,... (32)
where
A 7]
AY, = {?Jc/[qva(Y.,,j)]} Gj 33

is an increment of j-th particle position in n-th step of solution. Initial positions of particles are given by
Eq. 3D).

According to Eqs (32) and (33) positions of all N, + 1 particles were computed consecutively for n = 0,
1, 2, ....; stationary state was reached at n » 4 000 using time step k = 0.0001. The positions of the
particles Y,y ; were checked at each step of numerical simulation and the particle reflection was consi-
dered if following conditions was fulfilled

IY.,_j +AYyj| > 05. 34

The length of mixer was divided to N; intervals (classes) of identical width AY and relative frequencies
of particles occurrence in each class were computed at each m-th step of solution (m 2 1)
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pi = ni/(Np+1), (35)

where #; is a number of particles in i-th class, i.e. particles with position in the interval < i Ay, (i + 1) Ay >.
The relative frequencies p; were compared to Kolmogorov equation solution using following relation that
converts probability density ¢(y;f) to (“theoretical™) relative frequency

(i+1) Ay
pi(nk) = J)Cp(y;nk) dy, i=1,.,Nj. (36)
idy

RESULTS AND DISCUSSION

A time evolution of the dimensionless probability density ¢(y;?) resulting from nume-
rical solution of Kolmogorov equation is depicted in Fig. 2. It is obvious that segre-
gation of particles is considerably fast process. Already at ¢ = 0.0086 (2 min of mixing)
the concentration profile of greater particles along the mixer is well developed. With
mixing time increasing above ¢ = 0.0173 (4 min) the changes of @(y;f) bccome less
meaningful. Good agreement of computed @(y;f) and experimental data is evident in
Fig. 2. It means that simplc method of diffusion coefficient evaluation based on appli-
cation of Eq. (10) or (12) is quite correct in principle. Somewhat higher deviations
between computed probability density and experimental data can be observed at the
boundaries of the mixer, especially at the lowest value of the mixing time. The reason
of these deviations arise probably from not completely perfect fulfilment of the
assumption of elastic particle reflection on the mixer side walls (boundary condition
(15)) and perhaps from certain dependence of diffusion coefficient on mixing time. A
speculation on this possible dependence, however, comes out of frame of simple pheno-
menological model of segregation process presented in this paper.

Primary problem in numerical solution of a stochastic differential equation is a choi-
ce of the magnitude of time step (parameter & in Eq. (33)) and number of modelling
particles (N, in Eq. (31)). However, there is no straightforward method enabling a priori
cstimation of both parameters. The solution of Eq. (32) can be expressed either by the

Fic. 2
Evolution of dimensionless transitive probability
density in course of segregation process. —
Kolmogorov equation solution, O experimental
data. At = 0.0086, B¢ =0.0173, Ct = 0.0259, D
t = 0.0432 -0s o , %
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set of N + 1 random trajectories of individual particles in the mixer (see example in Fig.
3), or by probability distribution of particle positions at certain time (cf. Eq. (35)). Only
the second form of the solution can be used for comparison of numerical simulation
results to the measured particle concentrations and to the solution of corresponding
Kolmogorov equation.

We have used chi-square criterion for testing of goodness of fit of the probability
distribution resulting from numerical SDE solution and the dimensionless probability
density @(y;?) resulting from solution of Eq. (13). The g(y;f) was converted to relative
frequencies p, using Eq. (36).

The values of k in the range 0.01 —0.00001 and N, = 3 000 were used for the solution
of Eq. (32) and results at ¢ = 0.4 (stationary state) were compared to the solution of Eq. (13)
by means of chi-square test (N; = 40). However, the computed values of x? were lower
than critical value (x? = 54.6 at probability level 0.05) in all cases. It means, that the
effect of time step magnitude on the solution of SDE is not recognisable by means of
x? test. We used time step k = 0.0001 in all simulations reported below, which was the
same as used in numerical solution of Kolgomorov equation. The effect of N, on solu-
tion of SDE is discussed in further paragraphs.

It is evident from Fig. 4 that the agreement of the SDE and Kolgomorov equation
solutions expressed by particle relative frequencies is very good. The only small devia-
tions are of random nature and correspond to stochastic property of the SDE solution.
At all values of ¢ in Fig. 4 the % criterion value was lower than the critical one. There-
fore no significant difference between both equations results can be concluded.

FiG. 3 FiG. 4
Random trajectory of one particle in the mixer Comparison of the SDE and Kolmogorov equa-
generated by numerical solution of Eq. (34) tion solutions (¥, = 3 000, N; = 40). — Kolmogorov

equation solution, O SDE solution. A ¢ = 0.003,
Bt =0.020 Ct=0100, Dt =0.140
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According to Chebyshev inequality (e.g. ref.}) the solution of the SDE should
converge to the solution of Kolmogorov equation with increasing value of square root
of N,. There are two ways to increasing N, value: (i) using higher N, value in one
simulation run (the maximum possible value is, however, restricted by capacity of a
computer memory), or (ii) by repeating simulation with lower value of N, and avera-
ging of the resulting distributions. Both procedures were tested.

The effect of increasing number N, in one simulation run on the SDE solution is
demonstrated in Fig. S. It is obvious from visual observation that the SDE solution with
N, = 30 000 is at all values of ¢ somewhat more close to the Kolmogorov equation
solution, than the SDE solution with N, = 3 000 is. The x? test (at time ¢ = 0.140)
resulted to these values: % = 46.1 (N, = 3 000) and x? = 245.0 (N, = 30 000). Only the
first value of 2 is lower than the critical value 54.6. Therefore the expected
convergence of the SDE solution to Kolmogorov equation solution with increasing
value of N, was not proved by decreasing value of x2 criterion. The evaluation of the
sums of squares of deviations gave these results: S,; = 1.72 . 1074 (Np =3 000) and S,
=1.55.10™ (N, = 30 000), i.e. the increase of N, led to slightly improved agreement
of the SDE solution and Kolmogorov equation solution. We can conclude that the >
criterion is not suitable for testing of goodness of fit in the case of numerical simulation
of the SDEs. The reason is, probably, that the value of Z criterion is directly proportio-
nal to N, value, whereas Chebyshev inequality predicts convergence proportional to the
square root of NV,

The effect of averaging of probability distributions resulting from the repeated nume-
rical SDE simulations is documented in Fig. 6. The differences between the averaged

oo0s T T 4
G
P -]
0025
Is
o i — vl A - 1 Fl i
o LR+ ¢ 5 08 %os 0 y 0!
FiG. 5 FiG. 6
The effect of number of modelling particles &, on The effect of averaging on the SDE solution,
the SDE solution. @ N, = 3 000, O N;, = 30 000, Np = 3 000, ¢ = 0.025. O 10 repeated simu-
— Kolgomorov equation solution. A ¢ = 0.003, 8 lations, @ 20 repeated simulations, — Kolmo-
t =0.020, Ct=0.100, Dt = 0.140 gorov equation solution
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SDE solution both for 10 both for 20 repeated simulations and Kolmogorov equation
solution are almost negligible. The values of x? criterion and sum of squares of devia-
tions are: x*= 313, §,, = 5.35 . 105 for N, = 10, and x> = 20.2, S, = 2.90 . 10~ for N,
= 20. Both values of xsg arc lower than the critical one, the values of sums of squares of
deviations arc by one order lower than those in previous paragraph. Therefore avera-
ging of results of the repeated SDE simulations is much more effective from the point
of view of convergence of the SDE solution to the Kolmogorov equation solution than
usc of high number of modelling particles in a single simulation run. A reason of this
phenomenon may consist' in certain imperfectness of the random number generator
when producing very long sequences of random numbers (1.2 . 10° numbers at N, =
30 000 and 4 000 simulation steps). The sequences of random numbers G generated by
the method described in one of the previous paragraphs were checked for normality,
randomness and periodicity, however, the length of tested sequences was only 10— 10°
numbers due to the limited memory capacity of the computer uscd. All these “short”
tests proved the generator to be correct.

CONCLUSIONS

The results of numerical computations previewed in preceding section proved that the
stochastic modcl of the particle segregation process in the rotating horizontal drum
mixer presented in this paper describes adequately the dynamics of the process, i.e.
development of particle concentration profile with mixing time. The agreement of
model simulation results with experimental data is very good. It was proved that results
of direct numerical simulation of segregation process using stochastic differential equa-
tion are identical to the solution of corresponding Kolmogorov diffusion equation. The
algorithm of numerical solution of stochastic differential equation is very simple, gene-
ral and effective. It could be more attractive in a case of much more complicated model
(multivariable processes) resulting to systems of stochastic differential equations when
solution of system of Kolmogorov equations is very difficult, if not impossible at all.

SYMBOLS

constant in Eq. (10), m s~}
constant in Eq. (4)
diffusion coefficient, m*s”
transitive probability density, m™!

inverse distribution function

random variable from Gaussian distribution
dimensionless axial coordinate step
dimensionless diffusion coefficient

index of particle

dimensionless time step

length of mixer, m

2 ¢t

N»\-mkg"?\bmu—
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L half-length of mixer, m

M uniform random variable

n number of time steps

N; number of classes

Np number of particles

N; number of repeated simulations

N(O,1) Gaussian distribution with zero mean and unity variance

Ao g8 P ANNKT XN PgE T Q™YY
r=

- - g o

[ R Y N N

probability

relative frequency

sum of squares of deviations
dimensionless time

dimcosionless Wiener process
integration variable in Eqs (19) and (30)
drift velocity, m st

value of Wiener process, s
Wiener process, si2

172

concentration of particles
random function of time
dimensionless axial coordinate
dimensionless random function of time (particle position)
axial coordinate, m
random function of time (particle position), m
time interval, s
dimensionless time increment
time interval, s
dimensionless transitive probability density
distribution function
time, s
time, s
Subscripts
related to origin, initial value
related to stationary state
i-th time step, i-th class
j-th particle
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