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A process of segregation of two distinct fractions of solid particles i n  a rotating horizontal drum mixer was 
described by stochastic model assuming the segregation to be a diffusion process with varying diffusion 
coefficient. The model is based on description of motion of particles inside the mixer by means of a 
stochastic differential equation. Results of stochastic modelling were compared to the solution of the 
corresponding Kolmogorov equation and to results of earlier carried out experiments. 

In our previous paper' we have made an attempt to describe the process of axial segre- 
gation of two fractions of solid particles, differing in size, inside a horizontal drum 
mixer by means of a one-dimensional diffusion equation 

where 8 is the time and z the axial coordinate. Function x(z, 0) denotes the concentra- 
tion of larger particles at position x at time 8. V(z, 0) is a drift velocity and D(z, 0) 
diffusion coefficient. We supposed D to be a known function of axial coordinate and, 
as the case may be, also of time. A form of the function D(z, 0) must express the fact 
that in the proximity of side walls. of the mixer the segregation of distinct particle 
fractions takes place. An explanation of this phenomenon was given in a satisfactory 
way by Donald and Rosemanz3. If the particles in the mixer are of the same size, shape 
and density the segregation does not take place. However, Eq. (1) is still valid and can 
be used for description of mixing of solid particles differing, for example, only in a 
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colour. An assumption that D is of constant magnitude with respect to position and time 
is fully legitimate in such a case4,’. 

In the above cited paper’ it was proved that the drift velocity V(z, 0) may be neglec- 
ted. This approach is, from the point of view of diffusion processes theory, more 
correct than assumption of non-zero value of V(z, 0) as was used for description of that 
type of processes by Fan and Shin‘. 

We solved the differential equation (I) applying boundary conditions 

E o ;  (z’fL‘), (2) 
a 
- [D(Z,e) x(z,(3)1 az 

where L’ is a half-length of the mixer, and initial condition 

x(z, 0) = xo(z) 9 (3) 

i t .  for prescribed initial distribution xo(z) of greater particles along axial coordinate of 
the mixer. 

The solution of Eq. (I) was compared to data obtained in experiments carried out 
earlier7. In the case of so called “pure segregation”, i.e. for uniform initial distribution 
(xo(z) = const.), it was shown that the proposed model successfully fits experimental 
data. In the case of other than uniform initial distribution more sophisticated model 
comprising both processes of particle mixing and of segregation had to be used. How- 
ever, despite of higher model complexity less precise fitting of experimental data was 
achieved. 

Further on we have provedl that in the case of “pure segregation” the diffusion 
coefficient is a function only of axial coordinate, not of time, its value being indirectly 
proportional to the value of stationary concentration at given position 

D(z) = limB/x(z,B) = B / x , ( z ) .  (4) 
e+- 

Values of function x,(z) were evaluated by interpolation of averaged experimental 
values of stationary concentration of larger particles. 

TIIEORETICAL 

In the theory of diffusion p r o c e s s e ~ ~ ~ ~  it is demonstrated that following Kolmogorov 
forward diffusion equation is equivalent to Eq. (I) 

(5) 
a2 

t 2 [v(z,e)A - [o(z,e)A = o . ae az 

So called transitive probability density f is a solution of Eq. (5) 

1 f = Az;e [ zo;e,) = lim--P 5 Z(e) c z t AZ I Z, = Z(0,)) (0 > 0,) (6) 
2-4 A2 
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The probability density f describes e.g. one-dimensional random motion of a material 
particlc, the position of which Z(6) is a stochastic function of time defined a t  each 6 by 
the inequality in Eq. (6), under the condition that in certain preceding time 6, the 
particle was located at  a position zo (see footnote)*. 

It was proved8s9, that the stochastic process Z(6) may be also described by the 
stochastic differential equation 

dZ(8) - V [Z(6), 61 d6 + [U, (Z(0), 6)lM dW(6) , ( 7 )  

where the functions V and D are identical with that in  Eq. (5). The function W(0) is a 
source of randomness of the process Z(6). It is usually called Wiener process and is 
defined as the stochastic process with Gaussian distribution, zero mean value and 
variance equalling length of time interval elapsed from the origin of the process. 
Process “(0) itself has zero value a t  the origin. A solution of Eq. (7) satisfies to transi- 
tive probability density f defined by Eq. (6). 

Both approaches, i.e. solution of Kolmogorov equation and direct numerical solution 
of stochastic differential equation, will be used for description of one-dimensional 
diffusion of solid particles in a horizontal drum mixer with length L (L = 2L‘) - see Fig. 1. 
We shall assume symmetry of thc dilfusion (mixing) process with respect to the centre 
of the mixcr identical with the origin of axial coordinate z. We shall furthcr consider 
uniform initial distribution of particle fraction under consideration inside of the mixer 

,l/L , [ - L ’ s z s  t L ’ ]  

As it was stated above we shall assume zero value of the drift velocity and the case 
of so called “pure segregation” will be considered, i.e. diffusion coefficient will be 
function only of particle position on the axial coordinate. 

The conditions of elastic reflection of particles on the side walls of the mixer may be 
expressed by relation (cf. Eq. (2)) 

a 
az - [D(z)f l~;O)]  = 0 , (Z = * L’) . (9)  

* By this way we define the particle as a material point, in the case of the particle having defined size i t  is 
necessary to consider Z(0) as the coordinate of the particle centre of gravity. 
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Under fulfilment of the above conditions following equation for stationary prob- 
ability density f is valid 

D(z)lirnj(z;B) = D(z)f,(z) = b = const. (10) 
e-cm 

After introducing dimensionless coordinates of time and particle position 

we can define dimensionless transitive probability density and dimensionless diffusion 
coefficient H 

Then Eq. (5) may be rewritten in dimensionless form 

with initial condition 

1 , [ -112 r y  s +1/2] 
fl 

and boundary conditions 

Using thc same assumptions as in the three previous paragraphs we can write 
corresponding stochastic differential e q ~ a t i o n ~ ~ ~  , expressed now in an  integral form 

I I 
-c a 0 .(sl *L 

1 1  
I I  

FIG. 1 
Random motion of one of greater 1 1  

C. particles inside of rotating drum mixer 
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e 
Z(0) = Z(0) + flJ 0 [D(Z(t))]" dW(t) . (16) 

In a way analogous to Eqs (11) and (12) we can define dimensionless variables 

Y(t) = Z(tL/b) , H[Y(t)] = D [Z(tL/b)/L]/bL . (1 7) 

A definition of "dimensionless" Wiener process, with respect to numerical solution of 
the stochastic differential equation and possibility comparing results with the solution 
of diffusion equation (13), requires some additional considerations: According to Ito's 
definition of stochastic integral Eq. (16) may be written in the form 

n 

[z(e) - z ( o ) I / ~ ~  = lim 2 [D (Z (ei - 1))l" [We,) - - 1 ) 1 ,  (18) 

- e , ~  and qz(e)) is (with probability 
h-.Oi- l  

WIXR o = eo < el < ... eidl < e, < ... en = 8 ,  A = 
equalling one) a continuous function of time. Distribution function of Wiener process is 
according to its definition given by relation 

P [W(t) < w} = f -00 exp ( - u 2 / 2 f ) / ( ~ ) H  du . (1 9)  

Let us denote 

a = 8, - e,-l, (20) 

and consider a to be constant for all values of i. According to Feller'O we shall intro- 
duce an identity operator Xi(€)) Xj(0) for all stochastic processes having identical 
distribution function. Considering that Wiener process W(t) has Gaussian distribution 
function and, consequently, independent increments, we can write equation 

w(ei) - w(e, - 1) 4 W(a) 4 GG,, (21) 

where G, is a random variable with Gaussian distribution N(0,l). Then Eq. (18) may be 
replaced by 

n 

Let us further define dimensionless time increment 

y = a b l L .  (23) 

Dividing Eq. (22) by the mixer length L and considering Eq. (17) we can finally write 
"dimensionless" stochastic differential equation 

n 
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= Y(0) + f l ) [H(Y(s))]” dU(s) . 
0 

The stochastic function of time U(s) defined in Eq. (24) may be called 
“dimensionless” Wiener process. Its increments can be approximated by relation 

AU(t) f iG  . (25) 

The initial value of stochastic process Y(t) has a distribution defined by Eq. (24). 
Now we shall consider the elastic reflection of particles at the ends of the interval 

< -0.5, +0.5 >, (i.e. on the side walls of the mixer) in such a sense: If in the progress 
of numerical simulation using fixed value of time increment y > 0 at any time t = yn a 
value of Y(t) will overlap boundaries of that interval, then the reflection of particle back 
into the interval will be considered. The length of particle trajectory after the reflection 
equals the length of overlap, but the particle moves in opposite direction. 

The solution of Eq. (24), i.e. the stochastic function of time Y(t) is described by 
following distribution function 

wy) = P {-1/2 5 Y(t) < y} , (@(1/2) = 1) , (26) 

the first derivative of which 

is solution of Eq. (23). It enables us to compare the results of segregation modelling 
applying Kolmogorov equation to results of numerical simulation based on application 
of the stochastic differential equation. 

EXPERIMENTAL 

Experimental data presented in this paper were measured by Rochowiecki’ in a model mixer (length 12 cm, 
diameter 7.4 cm) filled with two fractions of a sea sand (particle size 0.385 - 0.43 mm and 0.2 - 0.25 mm). 
Concentration of greater particles was measured at 11 sampling ports evenly located along the mixer. 
Details are given in paper of Rochowiecki. 

Numerical Computations 

Numerical computations reported in following paragraphs were executed on a personal computer AT/286 
with 640 kB RAM and 80287 mathematical a-processor. All programmes were coded in  Turbo PASCAL 
(Borland, ver. 5.5) using extended range arithmetics. 

Interpolation of stotionary concentration profile. The values of diffusion coefficients D and H can be 
easily calculated using Eqs (10) or (12) if value of stationary probability density f&) or cp&) is known 
at any point of mixer axial coordinate. Probability density f&) is related to particle concentration x&) by 
equation 

0 

4.5 
f.(z) - x m ( z ) / ~ x - ( u )  du . (28) 
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However, as it was mentioned above, there were only 11 measured values of stationary concentration along 
the mixer at our disposal. Therefore, we have used cubic spline interpolation1' for evaluation of stationary 
concentrations at arbitrary position between experimental (grid) points. The values of stationary concentra- 
tion at the boundaries of mixer (on side walls) were not ascertainable by  measurement'^'. We have esti- 
mated them by trial-and-error method until condition 

0 

-0.5 
j $ 4 Y , d Y  - 1 (29) 

was fulfilled, where &y) is cubic spline approximation of stationary probability density. 
A value of constant b in Eq. (10) was determined by simple regression method described earlier' using 

concentration profiles measured at 2, 4, 6 and 10 min from beginning of the process. The value of b was 
8.63 . 10" m s-'. 

Numerical solution of Kolmogorov equation. Kolmogorov equation (13) with initial condition (14) and 
boundary conditions (15) was solved using finite difference method (Crank-Nicolson scheme)I2 with 
dimensionless axial coordinate step h = 0.005 and dimensionless time step k = O.OOO1. 'Ihe absolute error 
of dimensionless probability density cp was less than 1 . 

Numerical solution of stochastic diflrentirrl equation. Random numbers G were generated by method of 
inverse distribution function interpolat i~n '~ 

G = F'(hf) , (30) 

where F' is inverse Gaussian distribution function and M is uniform random variable on interval < 0, 1 >. 
Standard procedure RANDOM of Turbo PASCAL was used for generation of M values. The algorithm of 
Buttler" was adopted for intcrpolation of F' in Eq. (30). The grid values of F' were evaluated by nume- 
rical integration of Gaussian probability density function. 2 049 grid points were used for interpolation. 

The stochastic differential equation (24) (SDE) was solved for a set of Np t 1 hypothetical modelling 
particles distributed at origin ( t  = 0) evenly along the mixer axis, i.e. on the interval < -0.5, t0.5 >. 

Y Q ~  - -0.5 + j/Np, j - 0, 1, 2 ,..., N p  (31) 

(cf. initial condition (Id)), where Y0,j denotes the position of j-th particle at time r = 0. 

rewritten to form 
Eulcr's mcthodt2 with constant time step k was used for solution of Eq. (24) for each particle. SDE was 

where 

is an increment of j-th particle position in n-th step of solution. Initial positions of particles are given by 
Eq. (31). 

According to Eqs (32) and (33) positions of all N p  t 1 particles were computed consecutively for n = 0, 
1, 2, ....; stationary state was reached at n - 4 000 using time step k = 0,0001. The positions of the 
particles Yn+l,j were checked at each step of numerical simulation and the particle reflection was consi- 
dered if following conditions was fulfilled 

1 Ynj + AY.j I 5 0.5 . (34 

The length of mixer was divided to Ni intervals (classes) of identical width AY and relative frequencies 
of particles occurrence in each class were computed at each m-th step of solution (m L 1) 
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pi - d ( N p  + 1) , (35) 

where q is a number of particles in i-th class, i.e. particles with position in the interval < i Ay, (i t 1) Ay >. 
The relative frequencies pi were compared to Kolmogorov equation solution using following relation that 
converts probability density * ; t )  to (“theoretical”) relative frequency 

RESULTS AND DISCUSSION 

A time evolution of the dimensionless probability density rp(’yy;t) resulting from nume- 
rical solution of Kolmogorov equation is depicted in Fig. 2. It is obvious that segre- 
gation of particles is considerably fast process. Already at t = 0.0086 (2 min of mixing) 
the concentration profile of greater particles along the mixer is well developed. With 
mixing time increasing above t = 0.0173 (4 min) the changes of rq(y;t) become less 
meaningful. Good agreement of computed v(y;t) and experimental data is evident in 
Fig. 2. It means that simple method of diffusion coefficient evaluation based on appli- 
cation of Eq. (10) or (12) is quite correct in principle. Somewhat higher deviations 
between computed probability density and experimental data can be observed at the 
boundaries of the mixer, especially at the lowest value of the mixing time. The reason 
of these deviations arise probably from not completely perfect fulfilment of the 
assumption of elastic particle reflection on the mixer side walls (boundary condition 
(15)) and perhaps from certain dependence of diffusion coefficient on mixing time. A 
speculation on this possible dependence, however, comes out of frame of simple pheno- 
menological model of segregation process presented in  this paper. 

Primary problem in numerical solution of a stochastic differential equation is a choi- 
ce of the magnitude of time step (parameter k in Eq. (33)) and number of modelling 
particles (N,, in Eq. (31)). However, there is no straightforward method enabling a priori 
estimation of both parameters. The solution of Eq. (32) can be expressed either by the 

2 1  , I “ ’  I 

FIG. 2 
Evolution of dimensionless transitive probability 
density in course of segregation process. - 
Kolmogorov equation solution, 0 experimental 
data. A t = 0.0086, B t  = 0.0173, C t  = 0.0259, D 
t = 0.0432 

1 1 1  
O Y M  -01 0 4 . 5  ’ -0.5 
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set of Np + 1 random trajectories of individual particles in the mixer (see example in Fig. 
3), or by probability distribution of particle positions at certain time (cf. Eq. (35)). Only 
the second form of the solution can be used for comparison of numerical simulation 
results to the measured particle concentrations and to the solution of corresponding 
Kolmogorov equation. 

We have used chi-square criterion €or testing of goodness of €it of the probability 
distribution resulting from numerical SDE solution and the dimensionless probability 
density cp(y;t) resulting from solution of Eq. (13). The cp(y;t) was converted to relative 
frequencies pi using Eq. (36). 

The values of k in the range 0.01 - 0.00001 and Np = 3 000 were used for the solution 
of Eq. (32) and results at t = 0.4 (stationary state) were compared to the solution of Eq. (13) 
by means of chi-square test (Ni = 40). However, the computed values of xz were lower 
than critical value (x2 = 54.6 at  probability level 0.05) in all cases. It means, that the 
effect of time step magnitude on the solution of SDE is not recognisable by means of 
x2 test. We used time step k = 0.0001 in all simulations reported below, which was the 
same as used in numerical solution of Kolgomorov equation. The effect of Np on solu- 
tion of SDE is discussed in further paragraphs. 

It is evident from Fig. 4 that the agreement of the SDE and Kolgomorov equation 
solutions expressed by particle relative frequencies is very good. The only small devia- 
tions are of random nature and correspond to stochastic property of the SDE solution. 
At all values o f t  in Fig. 4 the x2 criterion value was lower than the critical one. There- 
fore no significant difference between both equations results can be concluded. 

T I 1 

-0.2 - 

- DS I 1 

0 1 2 t  3 

w5 

P 

oas 

FIG. 3 FIG. 4 
Random trajectory of one particle in the mixer 
generated by numerical solution of Eq. (34) 

Comparison of the SDE and Kolmogorov equa- 
tion solutions (Np = 3 OOO, Ni = 40). - Kolmogorov 
equation solution, 0 SDE solution. A t = 0.003, 
6 t = O.MO, C t = 0.100, D t = 0.140 

Collect Czech. Chem. Commun. (Vol. 57) (IS%?) 



Studies on Mixing 2109 
~~ ~ ~ _ _ _ _  ~~ ~~~ ~~ 

According to Chebyshev inequality (e.g. ref.I4) the solution of the SDE should 
converge to the solution of Kolmogorov equation with increasing value of square root 
of Np. There are two ways to increasing Np value: (i) using higher Np value in one 
simulation run (the maximum possible value is, however, restricted by capacity of a 
computer memory), or (ii) by repeating simulation with lower value of Np and avera- 
ging of the resulting distributions. Both procedures were tested. 

The effect of increasing number Np in one simulation run on the SDE solution is 
demonstrated in Fig. 5. It is obvious from visual observation that the SDE solution with 
Np = 30 000 is at all values of r somewhat more close to the Kolmogorov equation 
solution, than the SDE solution with Np = 3 000 is. The x2 test (at time r = 0.140) 
resulted to these values: x2 = 46.1 (Np = 3 000) and x2 = 245.0 (Np = 30 000). Only the 
first value of x2 is lower than the critical value 54.6. Therefore the expected 
convergence of the SDE solution to Kolmogorov equation solution with increasing 
value of Np was not proved by decreasing value of x2 criterion. The evaluation of the 
sums of squares of deviations gave these results: S,, = 1.72 . (Np = 3 000) and Ssq 
= 1.55 . lo4 (Np = 30 000), i.e. the increase of Np led to slightly improved agreement 
of the SDE solution and Kolmogorov equation solution. We can conclude that the xz 
criterion is not suitable for testing of goodness of fit in  the case of numerical simulation 
of the SDEs. The reason is, probably, that the value of x2 criterion is directly proportio- 
nal to Np value, whereas Chebyshev inequality predicts convergence proportional to the 
square root of Np. 

The effect of averaging of probability distributions resulting from the repeated nume- 
rical SDE simulations is documented in Fig. 6. The differences between the averaged 

0 
-M 0 I :g O Y W  

FIG. 5 
The effect of number of modelling particles N p  on 
the SDE solution. 0 N p  = 3 OOO, 0 Np = 30 OOO, 
- Kolgomorov equation solution. A t = 0.003, B 
t = 0.020, C t = 0.100, D t = 0.140 

I 1 I 1 
O! Y - 0.5 0 

FIG. 6 
The effect of averaging on the SDE solution, 
Np = 3 000, t = 0.025. 0 10 repeated simu- 
lations, 0 20 repeated simulations, - Kolmo- 
gorov equation solution 
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SDE solution both for 10 both for 20 repeated simulations and Kolmogorov equation 
solution are almost negligible. The values of x2 criterion and sum of squares of devia- 
tions are: x2 = 31.3, S = 5.35 . for N, 

deviations arc by one order lower than those in previous paragraph. Therefore avera- 
ging of results of the repeated SDE simulations is much more effective from the point 
of view of convergence of the SDE solution to the Kolmogorov equation solution than 
use of high number of modelling particles in a single simulation run. A reason of this 
phenomenon may c o n s i ~ t ’ ~  in certain imperfectness of the random numbcr gencrator 
when producing very long sequences of random numbers (1.2 . lo8 numbers at  N p  = 
30 000 and 4 000 simulation steps). The sequences of random numbers G generated by 
the mcthod described in one of the previous paragraphs were checked for normality, 
randomness and pcriodicity, however, the length of tested sequences was only lo4- lo5 
nunibcrs due to the limitcd memory capacity of the computer uscd. All these “short” 
tests proved thc generator to be correct. 

for N, = 10, and xz = 20.2, S, = 2.90 . 
= 20. Both values of x 7 are lower than thc critical one, the values of sums of squarcs of 

CONCLUSIONS 

The rcsults of numerical computations previcwed in preceding section proved that the 
stochastic modcl of the particle segregation process in the rotating horizontal drum 
mixer prcsented in this paper dcscribes adequately the dynamics of the process, i.e. 
development of particle concentration profile with mixing time. The agreement of 
niodel simulation results with experimental data is very good. It was proved that results 
of direct nurncrical siniulation of segregation process using stochastic diffcrcntial equa- 
tion are identical to the solution of corresponding Kolmogorov diffusion equation. Thc 
algorithm of numerical solution of stochastic differential equation is very simple, gene- 
ral and effective. It could be morc attractive in a case of much more complicated model 
(multivariable processes) resulting to systems of stochastic differential equations when 
solution of system of Kolmogorov equations is very difficult, if not impossible at all. 

SYMBOLS 

b 
B 
D 
f 
F’ 
G 
h 
H 

k 
L 

i 

constant in ~ q .  (101, rn s-I 
constant in Q. (4 )  
diffusion coefficient, rnz s-’ 
transitive probability density, rn-l 

inverse distribution function 
random variable from Gaussian distribution 
dimensionless axial coordinate step 
dimensionless diffusion coefficient 
index of particle 
dimensionless time step 
length of mixer, m 
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L' 
M 
n 

Ni 
NP 
N, 
N(0,l) 
P 
P 
ss, 
t 
CJ 

V 

W 

X 
Y 
Y 

Z 
a 
Y 
h 
cp 
@ 
0 

U 

W 

x 

z 

'T 

Subscripts 
0 

i 
00 

j 

half-length of mixer, m 
uniform random variable 
number of time steps 
number of classes 
number of particles 
number of repeated simulations 
Gaussian distribution with zero mean and unity variance 
probability 
relative frequency 
sum of squares of deviations 
dimensionless time 
dimcnsionles~ Wiener process 
integration variable in Eqs (19) and (30) 
drift velocity, m s-' 
value of Wiener process, s'R 
Wiener process, sin 
concentration of particles 
random function of time 
dimensionless axial coordinate 
dimensionless random function of time (particle position) 
axial coordinate, m 
random function of time (particle position), m 
time interval, s 
dimensionless time increment 
time interval, s 
dimensionless transitive probability density 
distribution function 
time, s 
time. s 

related to origin, initial value 
related to stationary state 
i-tb time step, i-th class 
j-th particle 
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